Regulation of plant glycine decarboxylase by s-nitrosylation and glutathionylation.

نویسندگان

  • M Cristina Palmieri
  • Christian Lindermayr
  • Hermann Bauwe
  • Clara Steinhauser
  • Joerg Durner
چکیده

Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enzyme of the photorespiratory C(2) cycle in C3 plants. GDC activity was inhibited by S-nitrosoglutathione due to S-nitrosylation/S-glutathionylation of several cysteine residues. Gas-exchange measurements demonstrated that the bacterial elicitor harpin, a strong inducer of reactive oxygen species and NO, inhibits GDC activity. Furthermore, an inhibitor of GDC, aminoacetonitrile, was able to mimic mitochondrial depolarization, hydrogen peroxide production, and cell death in response to stress or harpin treatment of cultured Arabidopsis cells. These findings indicate that the mitochondrial photorespiratory system is involved in the regulation of NO signal transduction in Arabidopsis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers.

Nitric oxide is generated in skeletal muscle with activity and decreases Ca2+ sensitivity of the contractile apparatus, putatively by S-nitrosylation of an unidentified protein. We investigated the mechanistic basis of this effect and its relationship to the oxidation-induced increase in Ca2+ sensitivity in mammalian fast-twitch (FT) fibers mediated by S-glutathionylation of Cys134 on fast trop...

متن کامل

S-glutathionylation: a redox-sensitive switch participating in nitroso-redox balance.

Cysteine side chains of proteins are being increasingly appreciated as the site of major posttranslational modifications that exert profound degrees of protein regulation. One of the consequences of tissue nitroso-redox imbalance is a process by which regulatory thiols switch from a state of physiologic regulation by S-nitrosylation to a state of dysregulated function because of oxidation. A ke...

متن کامل

Cross talk between S-nitrosylation and S-glutathionylation in control of the Na,K-ATPase regulation in hypoxic heart.

Oxygen-induced regulation of Na,K-ATPase was studied in rat myocardium. In rat heart, Na,K-ATPase responded to hypoxia with a dose-dependent inhibition in hydrolytic activity. Inhibition of Na,K-ATPase in hypoxic rat heart was associated with decrease in nitric oxide (NO) production and progressive oxidative stress. Accumulation of oxidized glutathione (GSSG) and decrease in NO availability in ...

متن کامل

Novel enhancement mechanism of tyrosine hydroxylase enzymatic activity by nitric oxide through S-nitrosylation

Tyrosine hydroxylase (TH) is a rate-limiting step enzyme in the synthesis of catecholamines. Catecholamines function both as hormone and neurotransmitters in the peripheral and central nervous systems, therefore TH's expression and enzymatic activity is tightly regulated by various mechanisms. Several post-translational modifications have been shown to regulate TH's enzymatic activity such as p...

متن کامل

Redox regulation of the Calvin–Benson cycle: something old, something new

Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin-Be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 152 3  شماره 

صفحات  -

تاریخ انتشار 2010